Squeezing dip moveout for depth‐variable velocity
نویسندگان
چکیده
منابع مشابه
Born theory of wave-equation dip moveout
Wave-equation dip moveout (DMO) addresses the DMO amplitude problem of finding an algorithm which faithfully preserves angular reflectivity while processing data to zero offset. Only three fundamentally different theoretical approaches to the DMO amplitude problem have been proposed: (1) mathematical decomposition of a prestack migration operator; (2) intuitively accounting for specific amplitu...
متن کاملThe applicability of dip moveout/azimuth moveout in the presence of caustics
Reflection seismic data continuation is the computation of data at source and receiver locations that differ from those in the original data, using whatever data are available. We develop a general theory of data continuation in the presence of caustics and illustrate it with three examples: dip moveout (DMO), azimuth moveout (AMO), and offset continuation. This theory does not require knowledg...
متن کامل3 D velocity - independent elliptically - anisotropic moveout correction a
Azimuthal anisotropy or lateral velocity variations cause azimuthal variations in moveout velocity which can lead to seismic image degradation if not properly handled. In cases where apparent azimuthally anisotropic moveout is present, a single picked velocity is inadequate to flatten an event on a 3D CMP gather. Conventional velocity analysis techniques require a significant amount of time and...
متن کاملThe quest for anisotropic moveout
There is renewed interest in velocity anisotropy, and publications of researchers outside SEP describe various schemes for estimating anisotropic moveout from seismic data. However, those schemes often face problems in that they commit too early to a particular class of elastic models which may require auxiliary information not available from surface seismic data. In essence, they are model-dri...
متن کاملAn Entropic Model for the Assessment of Streamwise Velocity Dip in Wide Open Channels
The three-dimensional structure of river flow and the presence of secondary currents, mainly near walls, often cause the maximum cross-sectional velocity to occur below the free surface, which is known as the “dip” phenomenon. The present study proposes a theoretical model derived from the entropy theory to predict the velocity dip position along with the corresponding velocity value. Field dat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: GEOPHYSICS
سال: 1993
ISSN: 0016-8033,1942-2156
DOI: 10.1190/1.1443410